
Cloud Computing Workshop
June , 2011

Berkeley, CA

NOSQL: “Huh? What is it good for?”

Dan Gunter (dkgunter@lbl.gov)
Computational Research Division, LBNL

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  About this talk
◦  It is not “hands-on” (sorry)
◦  Most of it is history and overview
◦  It’s about databases, not explicitly “clouds”

  Why it belongs here
◦  Cloud computing and scalable databases go

hand-in-hand
◦  There are a lot of open-source NOSQL projects

right now
◦  Understanding what they do, and what features

of the commercial implementations they’re
imitating, gives insight into scalability issues for
distributed computing in general

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  Introduction
 History
 Theory
 Technologies
 Data modeling
 Conclusions

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  First: not terribly important or deep in
meaning

  But “NOSQL” has gained currency
◦  Original, and best, meaning: Not Only SQL
  Wikipedia credits it to Carlo Strozzi in 1998, re-

introduced in 2009 by Eric Evans of Rackspace
  May use non-SQL, typically simpler, access methods
  Don’t need to follow all the rules for RDBMS’es
◦  Lends itself to “No (use of) SQL”, but this is

misleading
  Also referred to as “schemaless” databases
◦  Implies dynamic schema evolution

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

Year

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

 PICK

 M[umps]

 IBM IMS

 ISM ANSI M

 AT&T DBM
 TDBM
 NDBM

 SDBM

 GT.M

 BerkeleyDB

 Lotus Domino

 GDBM

 Mnesia
 Cache
 Metakit

 Neo4j

 db4o

 QDBM

 Memcached
 Infogrid graph DB

 CouchDB

 Google BigTable
 JackRabbit

 Tokyo Cabinet

 Dynamo

 MongoDB

 Cassandra

 Voldemort

 Dynomite

 Terrastore

 Redis

 Riak

 HBase
 Vertexdb
 Term: NOSQL

Pre-
RDBMS

RDBMS era NOSQL

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  Hierarchical storage and sparse multi-
dimensional arrays

  MUMPS (Massachusetts General
Hospital Utility Multi-Programming
System), later ANSI M
◦  sparse multi-dimensional array
◦  global variables, prefixed with “^”, are

automatically persisted:
 ^Car(“Door”,”Color”) = “Blue”

  “Pick” OS/database
◦  everything is hash table

  IBM Information Management System
(IMS), [DB1]

Source: Computer Systems News, 11/28/83

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  Introduced with E. F. Codd’s 1970 paper “A Relational
Model of Data for Large Shared Data Banks”

  Relational algebra provided declarative means of
reasoning about data sets

  SQL is loosely based on relational algebra

A1 ... An

Value1 ... Valuen

R
Relation
(Table)

Relation
variable (Table
name)

Attribute (Column)
{unordered} Heading

Tuple (Row)
{unordered}

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

Columnar or
Extensible record

Google
BigTable

HBase

Cassandra

HyperTable

Graph DB

Neo4j

FlockDB

Infinite-
Graph

Key/Value Store

Memcached

Redis

Tokyo
Cabinet

Dynamo

Project
Voldemort

Dynomite

Riak

SimpleDB

Document Store

CouchDB

MongoDB

Lotus
Domino

Mnesia

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  Global internet companies (Google, Amazon,
Yahoo!, FaceBook, etc.) hit limitations of
standard RDBMS solutions for one or more of:
◦  Extremely high transaction rates
◦  Dynamic analysis of huge volumes of data
◦  Rapidly evolving and/or semi-structured data

  And: these companies – unlike the financial and
health services industries using M and friends –
did not see need for “ACID” guarantees
◦  Didn’t want to run z/OS on mainframes (nutters!)
◦  “Open world” model, i.e. networks break your $&#!

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  Introduced by Eric Brewer in a PODC keynote
on July 2000, thus also known as “Brewer’s
Theorem”

  CAP = Consistency, Availability, Partition-
tolerance
◦  Theorem states that in any “shared data” system,

i.e. any distributed system, you can have at most 2
out of 3 of CAP (at the same time)
◦  This was later proved formally (w/asynchronous

model)
Forfeit partition-
tolerance

Forfeit availability Forfeit consistency

Single-site databases,
cluster databases, LDAP

Distributed databases w/
pessimistic locking,
majority protocols

Coda, web caching, DNS,
Dynamo

All robust distributed systems live here

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  RDBMS systems and research focus on ACID:
Atomicity, Consistency, Isolation, and Durability

◦  concurrent operations act as if they are serialized
  Brewer: this is one end of a spectrum, one that

sacrifices Partition-tolerance and Availability for
Consistency

  So, at the other end of the spectrum we have BASE:
Basically Available Soft-state with Eventual
consistency
◦  Stale data may be returned
◦  Optimistic locking (e.g., versioned writes)
◦  Simpler, faster, easier evolution

ACID BASE

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  Google BigTable
  Amazon Dynamo

These implementations
are not publicly
available, but the
distributed-system
techniques that they
integrated to build huge
databases have been
imitated, to a greater or
lesser extent, by every
implementation that
followed.

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  Internal Google back-end, scaling to thousands of
nodes, for
◦  web indexing, Google Earth, Google Finance

  Scales to petabytes of data, with highly varied
data size & latency requirements

  Data model is (3D) sparse, multi-dimensional,
sorted map
(row_key, column_key, timestamp) ->
string

  Technologies:
◦  Google File System, to store data across 1000’s of

nodes
  3-level indexing with Tablets
◦  SSTable for efficient lookup and high throughput
◦  Distributed locking with Chubby

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

Google’s Bigtable is essentially a massive, distributed
3-D spreadsheet. It doesn’t do SQL, there is limited
support for atomic transactions, nor does it support the
full relational database model. In short, in these and
other areas, the Google team made design trade-offs to
enable the scalability and fault-tolerance Google apps
require.

- Robin Harris, StorageMojo (blog), 2006-09-08

Source: http://labs.google.com/papers/bigtable-osdi06.pdf

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

 Chubby is a distributed locking
service. Requests go the current
Master. If the Master fails, Paxos is
used to elect a new one

Chubby server

DB
Chubby server

DB

Chubby server
DB

Chubby server
DB

Each “DB” is a replica
Each server
runs on its own
host

Chubby server
DB

Master

Google tends
to run 5
servers, with
only one being
the “master” at
any one time

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  Tablets represent contiguous groups of rows
◦  Automatically split when grow too big
◦  One “tablet server” holds many tablets

  3-level indexing scheme similar to B+-tree
◦  Root tablet -> Metadata tablets -> Data (leaf) tablets
◦  With 128MB metadata tablets, can addr. 234 leaves

  Client communicates directly with tablet server, so
data does not go through root (i.e. locate, then
transfer)
◦  Client also caches information

  Values written to memory, to disk in a commit log;
periodically dumped into read-only SSTables.
Better throughput at the expense of some latency

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  What is a Bloom filter?
◦  Each element is hashed multiple times
◦  Constant time: if an element is not in a set
◦  Can only say “no” with certainty

  Here, tests if an SSTable has a row/column pair
◦  NO: Stop
◦  YES: Need to load & retrieve data anyways

  Useful optimization in this space..

1 1 1 0 0 1 0 1 0 1 0 0 1 0

 { x,

w

y, z }
w is not in { x, y, z }
because it hashes to
one position with a 0

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  For bookkeeping tasks, Chubby’s replication
allows tolerance of node failures (P) and
consistency (C) at the price of availability (A),
during time to elect a new master and
synchronize the replicas.

  Tablets have “relaxed consistency” of
storage, GFS:
◦  A single master that maps files to servers
◦  Multiple replicas of the data
◦  Versioned writes
◦  Checksums to detect corruption (with periodic

handshakes)

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  Used by Amazon’s “core services”, for very high A
and P at the price of C (“eventual consistency”)

  Data is stored and retrieved solely by key (key/value
store)

  Techniques used:
◦  Consistent hashing – for partitioning
◦  Vector clocks – to allow MVCC and read repairs rather

than write contention
◦  Merkle trees—a data structure that can diff large amounts

of data quickly using a tree of hash values
◦  Gossip – A decentralized information sharing approach

that allows clusters to be self-maintaining
  Old techniques; but not used before at this scale with

very high reliability constraints

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

Virtual
node

Host	

“node”	

Host	

“node”	

Virtual
node

Virtual
node

Virtual
node

Virtual
node

Virtual
node

Virtual
node

.

.
Hash ring using
consistent hashing Host	

“node”	

Virtual
node

Virtual
node

Virtual
node

Virtual
node

4

4

3

Item

Hashes to this spot

coordinator
node

replicas

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  R = Number of healthy nodes from the preference
list (roughly, list of “next” nodes on hash ring)
needed for a read

  W = Number of healthy nodes from preference list
needed for a write

  N = number of replicas of each data item
  You can tune your performance
◦  R << N, high read availability
◦  W << N, high write availability
◦  R + W > N, consistent, but sloppy quorum
◦  R + W < N, at best, eventual consistency

  Hinted handoff keeps track of the data “missed”
by nodes that go down, and updates them when
they come back online

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  When things go really bad,
the “hinted” replicas may
be lost and nodes may
need to synchronize their
replicas

  To make synchronization
efficient, all the keys for a
given virtual node are
stored in a hash tree or
Merkle tree which stores
data at the leaves and
recursive hashes in the
nodes

  Same hash => Same data
at leaves

For Dynamo, the “data” are
the keys stored in a given
virtual node

Each node
is a hash
of its
children

If two top hashes
match, then the
trees are the
same

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  This ability to be effective at multiple scales is crucial to
the rise in NOSQL (schemaless) database popularity

Their whole
infrastructure is
dynamic, and
pieces of it are
splitting off and
growing, and sub-

pieces of those
pieces are later
breaking off and
also growing larger,
etc. etc.

•  Why didn’t Amazon or Google just run a big
machine with something like GT.M, Vertica, or
KDB (etc.)?
•  The answer must be partially to do something
new, but partially that it wasn’t just shopping carts
or search

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

Google
BigTable HBase Cassandra HyperTable

Neo4j FlockDB InfiniteGraph

Memcached

Redis

Tokyo
Cabinet

Dynamo

Project
Voldemort

Dynomite

Riak

Ke
y/

Va
lu

e
St

or
e

CouchDB

MongoDB

Lotus
Domino

Mnesia

D
ocum

ent Store

Graph

Columnar or Extensible record

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  Basic operations are simply
get, put, and delete

  All systems can distribute
keys over nodes

  Vector clocks are used as in
Dynamo (or just locks)

  Replication: common
  Transactions: not common
  Multiple storage engines:

common

Key/Value Store

Memcached

Redis

Tokyo
Cabinet

Dynamo

Project
Voldemort

Dynomite

Riak

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  Dynamo-like features:
◦  Automatic partitioning

with consistent hashing
◦  MVCC with vector clocks
◦  Eventual consistency (N,

R, and W)
  Also:
◦  combines cache with

storage to avoid sep.
cache layer
◦  pluggable storage layer

  RAM, disk, other..

Type	
 Key/Value Store	

License	
 Apache 2.0	

Language	
 Java	

Company	
 Linked-In	

Web	
 project-
voldemort.com	

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  Dynamo-like
features:
◦  Consistent hashing
◦  MVCC with vector

clocks
◦  Eventual consistency

(N, R, and W)
  Also:
◦  Hadoop-like M/R

queries in either JS or
Erlang
◦  REST access API

result = self.client
 .add(bucket.get_name())

 .map(“Riak.mapValuesJson”)

 .reduce(“Riak.reduceSum”)

 .run()

Type Key/Value Store

License Open-Source

Language Erlang

Company Basho

Web wiki.basho.com/
display/RIAK/Riak/

Map/reduce with the Python API

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  All share BigTable data
model
◦  rows and columns
◦  “column families” that can

have new columns added
  Consistency models vary:
◦  MVCC
◦  distributed locking

  Need to run on a different
back-end than BigTable
(GFS ain’t for sale)

Columnar or
Extensible record

Google
BigTable

HBase

Cassandra

HyperTable

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

Type	
 Extensible column
store	

License	
 Apache 2.0	

Language	
 Java	

Company	
 Apache Software
Foundation	

Web	
 cassandra.apache.org	

Widely used: Facebook,
Twitter, Digg, Reddit,
Rackspace

•  Marriage of BigTable
and Dynamo
– Consistent hashing
– Structured values
– Columns / column families
– Slicing with predicates
– Tunable consistency:

– W = 0, Any, 1, Quorum, All
– R = 1, Quorum, All

– Write commit log,
memtable, and uses
SSTables

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  Store objects
◦  not really documents; think:

nested maps
  Varying degrees of

consistency, but not ACID
  Allow queries on data contents

(M/R or other)
  May provide atomic read-and-

set operations

SimpleDB

Document Store

CouchDB

MongoDB

Lotus
Domino

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

Type	
 Document store	

License	
 Apache 2.0	

Language	
 Erlang	

Company	
 Apache Software
Foundation	

Web	
 couchdb.org	

•  Objects are grouped in
“collections”

•  REST API
•  Elegant, but slow

•  Read scalability through
async. replication with
eventual consistency

•  No sharding
•  Incrementally updated

MR “views”
•  ACID? Uses MVCC and

flush on commit. So,
kinda..

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

Type	
 Document
store	

License	
 GPL	

Language	
 C++	

Company	
 10gen	

Web	
 mongodb.org	

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

Type	
 Document store	

License	
 EPL*	

Language	
 Erlang	

Company	
 Ericsson	

Web	
 www.erlang.org	

Papers	
 http://www.erlang.se/
publications/
mnesia_overview.pdf	

* Mozilla Public License
modified to conform with laws of
Sweden (more)

•  Stores data in “tables”
•  Data stored in memory
•  Logged to selected disks

•  Replication and sharding
•  Queries are performed

using Erlang list
comprehensions (?!)

•  User-defined indexes on
fields of the objects

•  Transactions are supported
(but optional)

•  Optimizing query compiler
and dynamic “rule”
tables

•  Embedded in Erlang OTP
platform (similar to Pick)

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  Tough, since the whole point of NOSQL
databases is to not be a one-size-fits-all
solution
◦  e.g., Hard to quantify different styles of

consistency
 Yahoo Cloud-Serving Benchmark
◦  http://research.yahoo.com/node/3202

 Do not fool yourself that scalability is
going to be magically easy
◦  “MongoDB is web scale”: http://

www.youtube.com/watch?v=b2F-DItXtZs

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

http://labs.mudynamics.com/2010/04/01/why-nosql-is-bad-for-startups/

I remember having late night meetings about
tables, normalization and migration and how
best to represent the data we have for each
packet capture. For a startup, these kinds
of late night meetings are critical in
establishing a bond amongst the engineers
who are just learning to work with each
other. NoSQL destroys this human aspect in a
number of ways.

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

 Consider semi-structured input like:
ts = 2010-02-20T23:14:06Z
event = job.state
wf_uuid= 8bae72f2-etc
state = JOB_SUCCESS
name = create_dir_montage
job_submit_seq=1

•  If the fields are likely to change*, or new
types of data will appear, how to model
this kind of data?
1.  Blob
2.  Placeholders
3.  Entity-Attribute-Value

RDBMS
“anti-patterns”

* In the year since I first
wrote this slide, they
changed!

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  It’s terrible, trust me: I tried it
  You end up with queries that look like this to just extract

a bunch of fields that started out in the same log line:

select e.time, user.value user,
host.value host, dest.value dest,
 nbytes.value nbytes, dur.value
dur, type.value type
from event e
join attr user on e.id = user.e_id
join attr host on e.id = host.e_id
join attr dest on e.id = dest.e_id
join attr nbytes on e.id =
nbytes.e_id
join attr dur on e.id = dur.e_id
join attr type on e.id = type.e_id

join attr code on e.id = code.e_id
where
e.name = 'FTP_INFO'
and host.name = 'host'
and dest.name = 'dest'
and nbytes.name = 'nbytes'
and dur.name = 'dur'
and type.name = 'type'
and user.name = 'user'
and (code.name = 'code' and
code.value = '226')

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

 Yes, Erlang

 And Map/Reduce

query [E.name || E <- table(employee),
 E.sex = female]
end

function(doc) {
 if (doc.last_name) {
 emit(doc.last_name, doc);
 }
}
function find_users_whose_last_names_start_with(db, query) {
 var matches;
 matches = db.view('users/last_names',
 { startkey: query,
 endkey: query + "\u9999" });
 return matches.rows.map(dot('value'));
}

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  ..and JSON (MongoDB)

 all the key/value stores
 PIG (see tutorial!)
 etc.

  Is there any way this can be unified?
◦ Why would one want to do that?

{last_name: 'Smith'}, {'ssn': 1}

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

SQL
  Children point to parents
  Closed world
  Entities have identity

(extensional)
  Necessarily strongly typed
  Synchronous (ACID) updates

across multiple rows
  Environment coordinates

changes (transactions)
  Value-based, strong reference

(referentially consistent)
  Not compositional
  Query optimizer

co-SQL
  Parents point to children
  Open world
  Environment determines identity

(intensional)
  Potentially dynamically typed
  Asynchronous (BASE) updates

within single values
  Entities responsible to react to

changes (eventually consistent)
  Computation-based, weak reference

(expect 404)
  Compositional
  developer/pattern

Source: A Co-Relational Model for Large Shared Data Banks
DOI:10.1145/1924421.1924436

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  You need to think about this going in; you are
throwing away much of the elegance of
relational query optimization
◦  need to weigh against costs of static schemata

  Holistic approach:
◦  Spend lots of time on logical model, understand

problem!
◦  What degree of normalization makes sense?
◦  Is your data well-represented as a hash table? Is

it hierarchical? Graph-like?
◦  What degree of consistency do you really need?

Or maybe multiple ones?

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

 Use MongoDB for:
◦  Input data (materials)
◦ Queue manager
◦ Provenance
◦ Output data (calculated energies)

 Moved from MySQL database with
tons of tables requiring tons of joins

 Use de-normalized Mongo schema
◦  queries got considerably simpler

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  Every crystal that has (Li or Na or K), (Mn), (O or S or F or
Si), plus one other element except (Zn or Ni or Fe or Cu or
Co or Br or Re or Y) (nelements = 4) with volume less than
X, Mn has oxidation state 3+, Mn has 6-fold coordination,
and crystal system is monoclinic. X = 500 'wyckoff' is a
proxy for 6-fold coordination, oxidation state

{ "space_group.crystal_system" : "monoclinic",
"lattice.volume" : { "$lt" : 500 },
"element_names" : {"$all" : ['Mn'],"$size" : 4},
"atoms" : { "$elemMatch" : { "oxidation" : 3 } },
"$where" : "match_all(
this.element_names, ['Li', 'Na', 'K'], ['Mn'], ['O',
'S', 'F', 'Si'])”,
element.names : { “$nin” ['Zn', 'Ni', 'Fe', 'Cu',
'Co', 'Br', 'Re', 'Y’]} }

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  Anyone who says RDBMS is dead
 (and means it) is an idiot
  SQL is mostly a red herring
◦  Can be layered on top of NOSQL, e.g. BigQuery and Hive
◦  Ad-hoc joins? Really?

  What’s really interesting about NOSQL is scalability
(given relaxed consistency) and flexibility
◦  incremental scalability from local disk to large degrees of

parallelism in the face of distributed failure
◦  easier schema evolution, esp. important at the
“development” phase, which is often longer than anyone
wants to admit

  Whether we should move towards the One True
Database or a Unix-like ecosystem of tools is mostly a
matter of philosophical bent; certainly both directions
hold promise

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

  Cattell’s overview of “scalable datastores”
◦  http://cattell.net/datastores/

  BigTable
◦  http://labs.google.com/papers/bigtable.html

  Stonebraker et al. on columnar vs. map/reduce
◦  http://database.cs.brown.edu/sigmod09/benchmarks-

sigmod09.pdf
  NOSQL “summer reading”: http://nosqlsummer.org/
◦  “path throgh them”: http://doubleclix.wordpress.com/

2010/06/12/a-path-throug-nosql-summer-reading/
  Varley’s Master’s Thesis on non-relational db’s

(modeling)
◦  http://ianvarley.com/UT/MR/

Varley_MastersReport_Full_2009-08-07.pdf

20
11

 H
P

C
 a

nd
 C

lo
ud

C

om
pu

tin
g

W
or

ks
ho

p

 Database for RabbitMQ (distributed
messaging behind S3)

 Erlang seems to be gaining a
popularity in the distributed-computing
space

 Mmm.. tasty!

